A collaborative framework of web service recommendation with clustering-extended matrix factorisation

نویسندگان

  • Yueshen Xu
  • Jianwei Yin
  • Ying Li
چکیده

QoS-based web service recommendation is an important technique to select suitable services to users. In this paper, we aim to achieve superior recommendation accuracy by leveraging the known QoS records. To achieve this goal, we employ the clustering algorithm and Matrix Factorisation model (MF), and propose a collaborative framework of web service recommendation. Using the clustering algorithm, we cluster users and services into different clusters based on their QoS records, and identify similar cluster centres for each user and each service. We propose two clustering-extended MF models, i.e., service clustering-extended MF model (SC-EMF) and user clusteringextended MF model (UC-EMF). In both models, the QoS values are predicted by two parts. One is the invocation experience of the target service or user, and the other is that of the similar centres. The experimental results show the effectiveness of our models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Adaptive Information Analysis in Higher Education Institutes

Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...

متن کامل

Adaptive Information Analysis in Higher Education Institutes

Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...

متن کامل

Online recommendations at web-scale using matrix factorisation

In social networks, e-commerce systems, and other web-services the sheer size of available content is overwhelming. Highlighting relevant content is the focus of recommender systems. Most previous research in the area has provided several algorithms for personalising the user experience, but few have addressed the issues of scalability. In this study we show how matrix factorisation, one of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJWGS

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016